7 research outputs found

    Mental Workload Assessment using Low-Channel Prefrontal EEG Signals

    Get PDF
    Objective: Monitoring stress using physiological signals has recently achieved a lot of attention since it has a significant adverse influence on an individual daily's health and efficiency. As it has been proven that stress and mental workload are proportionally correlated, several studies have proposed algorithms for stress monitoring by increasing the mental workload. Despite the promising results reported in the literature, a majority of the proposed algorithms require the employment of several physiological signals which hinder their real-life application. Nonetheless, the advent of low-cost wearable devices has provided a new possibility for outdoor stress monitoring. The objective of this paper is to present an algorithm for stress detection using low-channel prefrontal electroencephalography (EEG) data. Methods: Firstly, artifacts in EEG signals are removed. Secondly, EEG signals are split into sub-bands using the discrete wavelet transform and two nonlinear parameter-free features are extracted. Thirdly, the extracted features are fed to three classifiers, i.e., support vector machine, Adaboost, and the K-Nearest Neighbours to discriminate stress from relaxed states. Main results: According to the obtained results, the highest accuracy (80.24%) was achieved using the AdaBoost classifier. Significance:Given that the proposed method does not require any parameter adjustment before processing, it has the potential to be used in real-world scenarios.Peer reviewe

    Prediction of Preterm Labor from the Electrohysterogram Signals Based on Different Gestational Weeks

    Get PDF
    Timely preterm labor prediction plays an important role for increasing the chance of neonate survival, the mother’s mental health, and reducing financial burdens imposed on the family. The objective of this study is to propose a method for the reliable prediction of preterm labor from the electrohysterogram (EHG) signals based on different pregnancy weeks. In this paper, EHG signals recorded from 300 subjects were split into 2 groups: (I) those with preterm and term labor EHG data that were recorded prior to the 26th week of pregnancy (referred to as the PE-TE group), and (II) those with preterm and term labor EHG data that were recorded after the 26th week of pregnancy (referred to as the PL-TL group). After decomposing each EHG signal into four intrinsic mode functions (IMFs) by empirical mode decomposition (EMD), several linear and nonlinear features were extracted. Then, a self-adaptive synthetic over-sampling method was used to balance the feature vector for each group. Finally, a feature selection method was performed and the prominent ones were fed to different classifiers for discriminating between term and preterm labor. For both groups, the AdaBoost classifier achieved the best results with a mean accuracy, sensitivity, specificity, and area under the curve (AUC) of 95%, 92%, 97%, and 0.99 for the PE-TE group and a mean accuracy, sensitivity, specificity, and AUC of 93%, 90%, 94%, and 0.98 for the PL-TL group. The similarity between the obtained results indicates the feasibility of the proposed method for the prediction of preterm labor based on different pregnancy weeks.Peer reviewe

    VME-DWT : an efficient algorithm for detection and elimination of eye blink from short segments of single EEG channel

    Get PDF
    Objective: Recent advances in development of low-cost single-channel electroencephalography (EEG) headbands have opened new possibilities for applications in health monitoring and brain-computer interface (BCI) systems. These recorded EEG signals, however, are often contaminated by eye blink artifacts that can yield the fallacious interpretation of the brain activity. This paper proposes an efficient algorithm, VME-DWT, to remove eye blinks in a short segment of the single EEG channel. Method: The proposed algorithm: (a) locates eye blink intervals using Variational Mode Extraction (VME) and (b) filters only contaminated EEG interval using an automatic Discrete Wavelet Transform (DWT) algorithm. The performance of VME-DWT is compared with an automatic Variational Mode Decomposition (AVMD) and a DWT-based algorithms, proposed for suppressing eye blinks in a short segment of the single EEG channel. Results: The VME-DWT detects and filters 95% of the eye blinks from the contaminated EEG signals with SNR ranging from −8 to +3 dB. The VME-DWT shows superiority to the AVMD and DWT with the higher mean value of correlation coefficient (0.92 vs. 0.83, 0.58) and lower mean value of RRMSE (0.42 vs. 0.59, 0.87). Significance: The VME-DWT can be a suitable algorithm for removal of eye blinks in low-cost single-channel EEG systems as it is: (a) computationally-efficient, the contaminated EEG signal is filtered in millisecond time resolution, (b) automatic, no human intervention is required, (c) low-invasive, EEG intervals without contamination remained unaltered, and (d) low-complexity, without need to the artifact reference

    Low Complexity Automatic Stationary Wavelet Transform for Elimination of Eye Blinks from EEG

    No full text
    The electroencephalogram signal (EEG) often suffers from various artifacts and noises that have physiological and non-physiological origins. Among these artifacts, eye blink, due to its amplitude is considered to have the most influence on EEG analysis. In this paper, a low complexity approach based on Stationary Wavelet Transform (SWT) and skewness is proposed to remove eye blink artifacts from EEG signals. The proposed method is compared against Automatic Wavelet Independent Components Analysis (AWICA) and Enhanced AWICA. Normalized Root Mean Square Error (NRMSE), Peak Signal-to-Noise Ratio (PSNR), and correlation coefficient ( ρ ) between filtered and pure EEG signals are utilized to quantify artifact removal performance. The proposed approach shows smaller NRMSE, larger PSNR, and larger correlation coefficient values compared to the other methods. Furthermore, the speed of execution of the proposed method is considerably faster than other methods, which makes it more suitable for real-time processing

    Prediction of Preterm Delivery from Unbalanced EHG Database

    No full text
    Objective: The early prediction of preterm labor can significantly minimize premature delivery complications for both the mother and infant. The aim of this research is to propose an automatic algorithm for the prediction of preterm labor using a single electrohysterogram (EHG) signal. Method: The proposed method firstly employs empirical mode decomposition (EMD) to split the EHG signal into two intrinsic mode functions (IMFs), then extracts sample entropy (SampEn), the root mean square (RMS), and the mean Teager–Kaiser energy (MTKE) from each IMF to form the feature vector. Finally, the extracted features are fed to a k-nearest neighbors (kNN), support vector machine (SVM), and decision tree (DT) classifiers to predict whether the recorded EHG signal refers to the preterm case. Main results: The studied database consists of 262 term and 38 preterm delivery pregnancies, each with three EHG channels, recorded for 30 min. The SVM with a polynomial kernel achieved the best result, with an average sensitivity of 99.5%, a specificity of 99.7%, and an accuracy of 99.7%. This was followed by DT, with a mean sensitivity of 100%, a specificity of 98.4%, and an accuracy of 98.7%. Significance: The main superiority of the proposed method over the state-of-the-art algorithms that studied the same database is the use of only a single EHG channel without using either synthetic data generation or feature ranking algorithms
    corecore